metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di- μ -acetato- $\kappa^3 O, O': O; \kappa^3 O: O, O'$ bis[(acetato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)]

Miguel Angel Harvey,^{a,b}* Sergio Baggio,^{b,c} María Teresa Garland^d and Ricardo Baggio^e

^aUniversidad Nacional de la Patagonia, Sede Trelew, 9100 Trelew, Chubut, Argentina, ^bCenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ^cUniversidad Nacional de la Patagonia, Sede Puerto Madryn, Argentina, ^dDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and CIMAT, Casilla 487-3, Santiago de Chile, Chile, and ^eDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina Correspondence e-mail: unharvey@cenpat.edu.ar

Received 16 August 2008; accepted 15 September 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.024; *wR* factor = 0.065; data-to-parameter ratio = 15.9.

The title compound, $[Cd_2(C_2H_3O_2)_4(C_{12}H_8N_2)_2]$, consists of dimeric units built up around a crystallographic symmetry centre. Each cadmium(II) unit is chelated by a 1,10phenanthroline (phen) group and two acetate ligands, one of which also acts as a bridge, linking both seven-coordinated cadmium(II) centres. The crystal structure is governed by a single π - π interaction between stacked phen groups [centroid–centroid distance 3.5209 (11) Å], leading to a planar structure parallel to (010).

Related literature

For related literature, see: Brown & Altermatt (1985); Janiak (2000); Harvey et al. (2006).

Experimental

Crystal data

$[Cd_2(C_2H_3O_2)_4(C_{12}H_8N_2)_2]$	V = 2933.5 (4) Å ³
$M_r = 821.40$	Z = 4
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.4422 (7) Å	$\mu = 1.51 \text{ mm}^{-1}$
b = 15.6384 (13) Å	T = 150 (2) K
c = 22.2195 (18) Å	$0.50 \times 0.40 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.50, \ T_{\rm max} = 0.74$

Refinement

ł

S

3

$R[F^2 > 2\sigma(F^2)] = 0.024$	210 parameters
$VR(F^2) = 0.064$	H-atom parameters constrained
1 = 1.06	$\Delta \rho_{\rm max} = 1.58 \text{ e } \text{\AA}^{-3}$
331 reflections	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

22676 measured reflections 3331 independent reflections

 $R_{\rm int} = 0.020$

3062 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Cd1-O13	2.2594 (15)	$Cd1 - O14^{i}$	2.4398 (13)
Cd1-O14	2.3239 (13)	Cd1-O24	2.4561 (15)
Cd1-N1	2.3466 (15)	Cd1-O23	2.5425 (16)
Cd1-N2	2.3890 (18)		

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD (Allen, 2002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2097).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.

- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3898.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, m1450 [doi:10.1107/S1600536808029462]

$Di-\mu-acetato-\kappa^3 O, O': O; \kappa^3 O: O, O'-bis[(acetato-\kappa^2 O, O')(1, 10-phenanthroline-\kappa^2 N, N') cadmium(II)]$

M. A. Harvey, S. Baggio, M. T. Garland and R. Baggio

Comment

The title compound consists of dimeric units located around a crystallographic symmetry centre (Fig. 1) and made up of two Cd cations, two 1,10-phenanthroline (phen) molecules and four acetate anions. Each cadmium(II) unit is chelated by a phen group (through both nitrogen atoms), and two acetates (through their carboxylato oxygens). A seventh coordination bond adds to these three chelating bites, by way of one of the latter oxygens which acts also as a bridge linking both cadmium(II) centres (Fig. 1). Table 1 presents the coordination distances achieved. The Cd-Cd distance (Cd1…Cd1ⁱ: 3.846 (1)Å, (i): 2-x, 1-y, 1-z) as well as the O-Cd-O angle (O14-Cd1-O14ⁱ: 72.37 (5) °) are unexceptional.

This coordination scheme of the $bis(\mu_2-acetato)-bis(acetato)-bis(L)$ type (L: a chelating aromatic amine) leading to a dimeric unit is not common among transition metal cations and in fact this is the first case reported.

The description of coordination geometries when chelating ligands are involved usually poses intrinsic difficulties which can be elegantly surmounted through a vectorial description of the ligand geometry, as proposed by Harvey *et al.* (2006) based on the Bond Valence Theory (Brown and Altermatt, 1985). When applied to the present case, the geometrical outcome turns out to be a tetrahedron, with angles between ligand vectors spanning the range 91.3 (1)–124.6 (1)°. The fact that the two main values associated with the theory, i.e. the bond valence sum (2.01 valence units, (v.u).) and the modulus of the bond valence vector (0.06 v.u.), agree almost perfectly with expected values (2.00 v.u. and 0.00 v.u., respectively) suggests a significant stability of this coordination sphere.

Regarding non-covalent interactions, there are just a few and not too strong either. The only hydrogen bond present (Table 2) is a non conventional, intramolecular one linking one of the methyl hydrogens to a carboxylato oxygen (Fig. 1). In fact the packing is governed by a single $\pi \cdots \pi$ interaction (Table 3 and Fig. 2) between staked phen groups, which gives raise to weakly interacting planar structures paralell to (010).

Experimental

The title compound was obtained by direct mixing of two 0.15 M solutions of cadmium acetate dihydrate and 1,10-phenanthroline in dimethylformamide. Colorless needles began to develop at once, and after one day adequate crystals for X-ray diffraction could be extracted.

Refinement

The hydrogen atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.96-0.98Å and $U_{iso}(H) = 1.2/1.5 \times U_{equiv}(C)$. Methyl groups were allowed to rotate around their 3-fold axis as well. A peak of ca. 1.5 eA⁻³ appears at 0.05 Å from Cd1. The next largest peak is less than 1.0 eA⁻³ in height.

Figures

Fig. 1. The dimeric unit of the title compound: the symmetry-independent part shown in full thermal ellipsoids, drawn at the 40% level. The intradimeric H-bond is shown in dashed lines.

Fig. 2. Packing view of the title computed down the [010] direction, showing the π ··· π bonded two-dimensional network.

Di-µ-acetato- $\kappa^3 O, O': O; \kappa^3 O: O, O'$ - bis[(acetato- $\kappa^2 O, O'$)(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II)]

Crystal data	
$[Cd_2(C_2H_3O_2)_4(C_{12}H_8N_2)_2]$	$F_{000} = 1632$
$M_r = 821.40$	$D_{\rm x} = 1.860 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 11288 reflections
a = 8.4422 (7) Å	$\theta = 2.7 - 27.8^{\circ}$
<i>b</i> = 15.6384 (13) Å	$\mu = 1.51 \text{ mm}^{-1}$
c = 22.2195 (18) Å	T = 150 (2) K
$V = 2933.5 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.50 \times 0.40 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3331 independent reflections
Radiation source: fine-focus sealed tube	3062 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 170(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -10 \rightarrow 11$
$T_{\min} = 0.50, \ T_{\max} = 0.74$	$k = -19 \rightarrow 20$
22676 measured reflections	$l = -28 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.024$ H-atom parameters constrained $wR(F^2) = 0.064$ $w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 1.4472P]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.06 $(\Delta/\sigma)_{max} = 0.003$ 3331 reflections $\Delta\rho_{max} = 1.58 \text{ e Å}^{-3}$ 210 parameters $\Delta\rho_{min} = -0.40 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant directExtinction correction: none

Special details

methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	Uiso*/Ueq
Cd1	1.020491 (17)	0.537614 (8)	0.417981 (6)	0.01764 (7)
N1	0.88137 (18)	0.41531 (9)	0.38716 (7)	0.0202 (3)
N2	1.02282 (19)	0.52821 (10)	0.31067 (8)	0.0216 (4)
C1	0.8037 (2)	0.36453 (13)	0.42461 (9)	0.0235 (4)
H1	0.8129	0.3746	0.4666	0.028*
C2	0.7084 (2)	0.29656 (12)	0.40510 (9)	0.0254 (4)
H2	0.6519	0.2626	0.4333	0.030*
C3	0.6983 (2)	0.28003 (12)	0.34466 (9)	0.0262 (4)
Н3	0.6364	0.2334	0.3305	0.031*
C4	0.7800 (2)	0.33252 (12)	0.30367 (9)	0.0239 (4)
C5	0.7738 (2)	0.32032 (14)	0.23972 (9)	0.0302 (4)
H5	0.7160	0.2734	0.2238	0.036*
C6	0.8487 (3)	0.37424 (14)	0.20153 (9)	0.0312 (5)
H6	0.8441	0.3641	0.1594	0.037*
C7	0.9354 (2)	0.44695 (13)	0.22400 (9)	0.0256 (4)
C8	1.0118 (2)	0.50644 (16)	0.18593 (10)	0.0294 (5)
H8	1.0089	0.4993	0.1435	0.035*
C9	1.0896 (3)	0.57412 (14)	0.21075 (9)	0.0308 (4)
Н9	1.1416	0.6147	0.1858	0.037*
C10	1.0919 (2)	0.58316 (13)	0.27331 (9)	0.0273 (4)
H10	1.1455	0.6310	0.2900	0.033*
C11	0.9455 (2)	0.46042 (11)	0.28630 (9)	0.0209 (4)
C12	0.8686 (2)	0.40117 (11)	0.32713 (8)	0.0199 (4)
C13	1.2479 (2)	0.66285 (12)	0.41072 (8)	0.0207 (4)
C23	1.3877 (3)	0.72303 (14)	0.40927 (9)	0.0286 (4)
H23A	1.3759	0.7629	0.3755	0.043*
H23B	1.4855	0.6901	0.4043	0.043*
H23C	1.3923	0.7552	0.4471	0.043*

supplementary materials

013	1.27330 (18)	0.58473 (9)	0.42176 (6)	0.0282 (3)
O23	1.11146 (17)	0.69086 (10)	0.40168 (8)	0.0354 (3)
C14	0.7547 (2)	0.58393 (11)	0.48087 (8)	0.0192 (3)
C24	0.6115 (2)	0.59980 (13)	0.51958 (9)	0.0252 (4)
H24A	0.6170	0.6576	0.5365	0.038*
H24B	0.6088	0.5579	0.5523	0.038*
H24C	0.5155	0.5943	0.4951	0.038*
O14	0.88527 (15)	0.56447 (8)	0.50710 (6)	0.0229 (3)
O24	0.74741 (18)	0.59082 (9)	0.42510 (6)	0.0247 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01769 (10)	0.01872 (10)	0.01652 (10)	-0.00151 (4)	-0.00046 (4)	-0.00019 (4)
N1	0.0207 (7)	0.0190 (7)	0.0210 (7)	0.0005 (6)	-0.0011 (6)	-0.0009 (6)
N2	0.0212 (9)	0.0241 (8)	0.0196 (8)	-0.0004 (6)	0.0005 (6)	-0.0009 (6)
C1	0.0231 (10)	0.0235 (10)	0.0238 (9)	0.0010 (8)	-0.0003 (7)	0.0000 (7)
C2	0.0223 (9)	0.0189 (9)	0.0350 (10)	-0.0002 (7)	0.0037 (8)	0.0016 (8)
C3	0.0209 (9)	0.0206 (9)	0.0372 (11)	-0.0006 (7)	-0.0017 (8)	-0.0047 (8)
C4	0.0205 (9)	0.0224 (9)	0.0290 (10)	0.0038 (7)	-0.0037 (7)	-0.0060 (7)
C5	0.0285 (10)	0.0310 (11)	0.0310 (10)	-0.0005 (8)	-0.0076 (8)	-0.0124 (9)
C6	0.0326 (11)	0.0398 (12)	0.0213 (9)	0.0053 (9)	-0.0055 (8)	-0.0101 (8)
C7	0.0231 (10)	0.0318 (10)	0.0220 (9)	0.0070 (8)	-0.0013 (8)	-0.0021 (8)
C8	0.0299 (11)	0.0401 (13)	0.0180 (9)	0.0071 (9)	0.0009 (7)	0.0013 (9)
C9	0.0321 (11)	0.0364 (12)	0.0240 (10)	0.0012 (9)	0.0056 (8)	0.0074 (8)
C10	0.0273 (10)	0.0292 (10)	0.0255 (10)	-0.0034 (8)	0.0028 (8)	0.0029 (8)
C11	0.0168 (9)	0.0213 (9)	0.0248 (10)	0.0044 (7)	-0.0034 (8)	-0.0024 (7)
C12	0.0169 (8)	0.0213 (9)	0.0217 (9)	0.0032 (7)	-0.0018 (7)	-0.0028 (7)
C13	0.0198 (9)	0.0245 (10)	0.0179 (8)	-0.0030 (8)	0.0003 (7)	-0.0008 (7)
C23	0.0239 (10)	0.0263 (10)	0.0355 (11)	-0.0050 (8)	-0.0032 (8)	0.0055 (8)
O13	0.0225 (7)	0.0234 (7)	0.0387 (8)	-0.0037 (6)	-0.0055 (6)	0.0065 (6)
O23	0.0200 (7)	0.0277 (8)	0.0584 (10)	0.0019 (6)	-0.0047 (7)	-0.0034 (7)
C14	0.0204 (8)	0.0138 (8)	0.0233 (9)	-0.0002 (6)	-0.0008 (7)	0.0005 (7)
C24	0.0228 (9)	0.0286 (10)	0.0243 (9)	0.0047 (8)	0.0014 (7)	0.0004 (8)
014	0.0195 (6)	0.0261 (7)	0.0229 (6)	0.0029 (5)	-0.0011 (5)	0.0022 (5)
O24	0.0248 (7)	0.0291 (7)	0.0201 (6)	0.0023 (6)	-0.0005(5)	0.0011 (5)

Geometric parameters (Å, °)

Cd1—O13	2.2594 (15)	С6—Н6	0.9500
Cd1014	2.3239 (13)	C7—C11	1.403 (3)
Cd1—N1	2.3466 (15)	C7—C8	1.413 (3)
Cd1—N2	2.3890 (18)	C8—C9	1.362 (3)
Cd1—O14 ⁱ	2.4398 (13)	C8—H8	0.9500
Cd1—O24	2.4561 (15)	C9—C10	1.397 (3)
Cd1—O23	2.5425 (16)	С9—Н9	0.9500
N1—C1	1.324 (2)	C10—H10	0.9500
N1—C12	1.356 (2)	C11—C12	1.450 (3)

N2—C10	1.329 (3)	C13—O23	1.248 (2)
N2—C11	1.358 (2)	C13—O13	1.265 (2)
C1—C2	1.402 (3)	C13—C23	1.510 (3)
С1—Н1	0.9500	С23—Н23А	0.9800
С2—С3	1.370 (3)	С23—Н23В	0.9800
С2—Н2	0.9500	С23—Н23С	0.9800
C3—C4	1.407 (3)	C14—O24	1.246 (2)
С3—Н3	0.9500	C14—O14	1.283 (2)
C4—C12	1.409 (3)	C14—C24	1.504 (2)
C4—C5	1.435 (3)	C24—H24A	0.9800
С5—С6	1.353 (3)	C24—H24B	0.9800
С5—Н5	0.9500	C24—H24C	0.9800
C6—C7	1.442 (3)	O14—Cd1 ⁱ	2.4398 (13)
O13—Cd1—O14	111.92 (5)	C8—C7—C6	122.93 (19)
O13—Cd1—N1	138.54 (5)	C9—C8—C7	119.28 (19)
O14—Cd1—N1	98.64 (5)	С9—С8—Н8	120.4
O13—Cd1—N2	92.83 (5)	С7—С8—Н8	120.4
O14—Cd1—N2	149.95 (5)	C8—C9—C10	119.21 (19)
N1—Cd1—N2	70.28 (5)	С8—С9—Н9	120.4
O13—Cd1—O14 ⁱ	83.11 (5)	С10—С9—Н9	120.4
014—Cd1—014 ⁱ	72.37 (5)	N2-C10-C9	123.3 (2)
N1—Cd1—O14 ⁱ	80.16 (5)	N2—C10—H10	118.3
N2—Cd1—O14 ⁱ	129.64 (5)	C9—C10—H10	118.3
O13—Cd1—O24	140.70 (6)	N2—C11—C7	122.70 (19)
O14—Cd1—O24	54.75 (4)	N2-C11-C12	117.68 (18)
N1—Cd1—O24	79.93 (5)	C7—C11—C12	119.61 (17)
N2—Cd1—O24	95.33 (5)	N1-C12-C4	122.03 (17)
O14 ⁱ —Cd1—O24	118.94 (4)	N1—C12—C11	118.39 (16)
O13—Cd1—O23	54.03 (5)	C4—C12—C11	119.55 (17)
O14—Cd1—O23	95.70 (5)	O23—C13—O13	121.80 (18)
N1—Cd1—O23	151.38 (5)	O23—C13—C23	119.94 (18)
N2—Cd1—O23	85.03 (6)	O13—C13—C23	118.26 (18)
O14 ⁱ —Cd1—O23	127.99 (5)	O23—C13—Cd1	67.36 (11)
O24—Cd1—O23	88.47 (5)	O13—C13—Cd1	54.44 (10)
C1—N1—C12	118.75 (16)	C23—C13—Cd1	172.67 (14)
C1—N1—Cd1	123.59 (13)	C13—C23—H23A	109.5
C12—N1—Cd1	117.36 (12)	С13—С23—Н23В	109.5
C10—N2—C11	117.80 (18)	H23A—C23—H23B	109.5
C10—N2—Cd1	125.95 (13)	С13—С23—Н23С	109.5
C11—N2—Cd1	116.25 (13)	H23A—C23—H23C	109.5
N1—C1—C2	123.00 (18)	H23B—C23—H23C	109.5
N1—C1—H1	118.5	C13—O13—Cd1	98.47 (12)
C2—C1—H1	118.5	C13—O23—Cd1	85.70 (12)
C3—C2—C1	118.82 (18)	O24—C14—O14	120.99 (17)
С3—С2—Н2	120.6	O24—C14—C24	120.98 (17)
С1—С2—Н2	120.6	O14—C14—C24	118.02 (16)
C2—C3—C4	119.59 (18)	O24—C14—Cd1	63.65 (10)

supplementary materials

С2—С3—Н3	120.2		O14-C14-Cd1		57.71 (9)
С4—С3—Н3	120.2		C24—C14—Cd1		173.24 (13)
C3—C4—C12	117.74 (17))	C14—C24—H24A		109.5
C3—C4—C5	123.09 (18)	C14—C24—H24B		109.5
C12—C4—C5	119.15 (18))	H24A—C24—H24B		109.5
C6—C5—C4	121.43 (19)	C14—C24—H24C		109.5
С6—С5—Н5	119.3		H24A—C24—H24C		109.5
С4—С5—Н5	119.3		H24B—C24—H24C		109.5
C5—C6—C7	120.77 (18)	C14		94.46 (10)
С5—С6—Н6	119.6		C14—O14—Cd1 ⁱ		138.16 (11)
С7—С6—Н6	119.6		Cd1—O14—Cd1 ⁱ		107.63 (5)
C11—C7—C8	117.7 (2)		C14		89.32 (11)
C11—C7—C6	119.41 (19))			
Symmetry codes: (i) $-x+2$, $-y+1$,	-z+1.				
Hydrogen-bond geometry (Å, °,)				
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C24—H24B…O13 ⁱ		0.98	2.51	3.313 (2)	139
Symmetry codes: (i) $-x+2$, $-y+1$,	<i>-z</i> +1.				
Table 3 Table 3. π - π interactions (Å, °).	for (I)				
Group 1/Group 2	ccd		ipd	sa	
Cg1/Cg2 ⁱⁱ	3.5209 (11)		3.50(1)	4(2)	

Symmetry code: (ii) 1/2+x,y,1/2-z

Cg1: N2,C10,C9,C8,C7,C11 Cg2: C4,C5,C6,C7,C11,C12

ccd: center-to-center distance (distance between ring centroids); sa: mean slippage angle (angle subtended by the intercentroid vector to the plane normal); ipd: mean interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).

Fig. 2

